Abordagem de modelação
O termo "abordagem de modelação" é um conjunto de técnicas e estruturas utilizadas para construir as representações abstractas dos sistemas, processos ou fenómenos. É necessário para modelar, analisar, prever e otimizar o desempenho nas diferentes áreas, incluindo a engenharia, a ciência dos dados e a economia.
A modelação matemática, em que as equações representam relações; a modelação estatística, que utiliza dados para inferir variações; e a modelação de simulação, que imita o funcionamento de processos reais ao longo de um período de tempo, são os principais tipos de abordagens de modelação. A título de exemplo, em ciências ambientais, os modelos matemáticos prevêem os efeitos das alterações climáticas, enquanto os modelos de simulação permitem visualizar cenários hipotéticos no planeamento urbano.
A metodologia adequada ao seu projeto depende realmente dos objectivos do mesmo, da disponibilidade de dados e da complexidade do sistema a modelar. Para dar um exemplo, um modelo matemático pode ser adequado para previsões quantitativas precisas, mas um modelo de simulação seria preferível para a compreensão de interações complexas num sistema dinâmico como o fluxo de tráfego.
Os dados são fundamentais para as técnicas de modelação, uma vez que fornecem informações relacionadas com os parâmetros do modelo e a validação da exatidão do modelo. A construção de modelos de boa qualidade é a principal causa da produção de modelos preditivos sólidos e fiáveis. Tomemos, por exemplo, o caso da aprendizagem automática, em que grandes quantidades de dados são um pré-requisito para permitir que os algoritmos os treinem para identificar padrões e tomar decisões.
Os analistas quantitativos no domínio das finanças utilizam normalmente a equação de equivalência da modelação econométrica para efeitos de previsão das tendências do mercado e de avaliação dos riscos. Os modelos de base estatística especificados nestes estudos têm um efeito claro na política de investimento, baseando-se em dados financeiros históricos. Por exemplo, um modelo de séries temporais pode extrapolar o desempenho das acções olhando para períodos anteriores e referindo-se a indicadores económicos.